Jingguang Han, Utsab Barman, Jeremiah Hayes, Jinhua Du, Edward Burgin, Dadong Wan, 2018. NextGen AML: Distributed Deep Learning based Language Technologies to Augment Anti Money Laundering Investigation., ACL, 2018, System Demo
Barman, U., Wagner, J. and Foster, J., 2016. Part-of-speech Tagging of Code-mixed Social Media Content: Pipeline, Stacking and Joint Modelling. EMNLP 2016, p.30.
Barman, U., Das, A., Wagner, J. and Foster, J., 2014, October. Code mixing: A challenge for language identification in the language of social media. In Proceedings of The First Workshop on Computational Approaches to Code Switching(pp. 13-23).
Barman, U., Wagner, J., Chrupała, G. and Foster, J., 2014, October. Dcu-uvt: Word-level language classification with code-mixed data. In Proceedings of the First Workshop on Computational Approaches to Code Switching (pp. 127-132).
Wagner, J., Arora, P., Cortes, S., Barman, U., Bogdanova, D., Foster, J. and Tounsi, L., 2014. Dcu: Aspect-based polarity classification for semeval task 4.
Pakray, P., Barman, U., Bandyopadhyay, S. and Gelbukh, A., 2012. Semantic answer validation using universal networking language. International Journal of Computer Science and Information Technologies, 3(4), pp.4927-4932.
Pakray, P., Barman, U., Bandyopadhyay, S. and Gelbukh, A., 2011. A statistics-based semantic textual entailment system. Advances in Artificial Intelligence, pp.267-276.
Das, A., Burman, U., Balamurali, A.R. and Bandyopadhyay, S., 2013. NER from Tweets: SRI-JU System@ MSM 2013. Making Sense of Microposts (# MSM2013).